Hölder-Young bounds for operators with regular kernels, Hardy-Littlewood bounds for operators with weakly singular kernels, and Calderon- Zygmund bounds for strongly singular convolution operators over Euclidean space

نویسنده

  • DAVID LEVERMORE
چکیده

It easy to see that every bounded linear operator is continuous. It is not hard to show that the converse is also true. The notions of bounded and continuous thereby coincide for linear operators acting between normed spaces. It is customary to prefer the terminology bounded linear operator over that of continuous linear operator. The reason for this preference is the fact that the hard part of showing a linear operator is continuous is usually establishing the bound (1.2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lp BOUNDS FOR SINGULAR INTEGRALS AND MAXIMAL SINGULAR

Convolution type Calderr on-Zygmund singular integral operators with rough kernels p.v. (x)=jxj n are studied. A condition on implying that the corresponding singular integrals and maximal singular integrals map L p ! L p for 1 < p < 1 is obtained. This condition is shown to be diierent from the condition 2 H 1 (S n?1).

متن کامل

L Bounds for Singular Integrals and Maximal Singular Integrals with Rough Kernels

Convolution type Calderón-Zygmund singular integral operators with rough kernels p.v. Ω(x)/|x| are studied. A condition on Ω implying that the corresponding singular integrals and maximal singular integrals map L → L for 1 < p < ∞ is obtained. This condition is shown to be different from the condition Ω ∈ H1(Sn−1).

متن کامل

Convolution Calderón-Zygmund singular integral operators with rough kernels

A survey of known results in the theory of convolution type Calderón-Zygmund singular integral operators with rough kernels is given. Some recent progress is discussed. A list of remaining open questions is presented.

متن کامل

A Bilinear T(b) Theorem for Singular Integral Operators

In this work, we present a bilinear Tb theorem for singular integral operators of Calderón-Zygmund type. We prove some new accretive type Littlewood-Paley results and construct a bilinear paraproduct for a para-accretive function setting. As an application of our bilinear Tb theorem, we prove product Lebesgue space bounds for bilinear Riesz transforms defined on Lipschitz curves.

متن کامل

New estimates for the maximal singular integral

In this paper we pursue the study of the problem of controlling the maximal singular integral T ∗f by the singular integral Tf . Here T is a smooth homogeneous Calderón-Zygmund singular integral of convolution type. We consider two forms of control, namely, in the L2(Rn) norm and via pointwise estimates of T ∗f by M(Tf) or M2(Tf) , where M is the Hardy-Littlewood maximal operator and M2 = M ◦M ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009